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Abstract 
Background. Advances in GPS technology have created both opportunities in ecology as well as a need for 
analytical tools that can deal with the growing volume of data and ancillary variables associated with each 
location. 
 
Results. We present T-LoCoH, a home range construction algorithm that incorporates time into the construction 
and aggregation of local kernels. Time is integrated with Euclidean space using an adaptive scaling of the 
individual's characteristic velocity, enabling the construction of utilization distributions that capture temporal 
partitions of space as well as contours that differentiate internal space based on movement phase and time-use 
metrics. We test T-LoCoH against a simulated dataset and provide illustrative examples from a GPS dataset 
from springbok in Namibia. The method is available as a package for R. 
 
Conclusions. The incorporation of time into home range construction expands the concept of utilization 
distributions beyond the traditional density gradient to spatial models of movement and time, opening the door 
to new applications in movement ecology. 
 
Background 

Recent advances in GPS and data transmission 
technologies have greatly increased the volume, 
accuracy, affordability, and ancillary variables 
integrated with movement data [1, 2], creating both 
opportunities and challenges for ecologists [3, 4].  

One of the most common uses of location data 
has been the estimation of home ranges and 
utilization distributions (UDs) [5]. Minimum convex 
polygons (MCPs) were among the earliest home 
range construction techniques, and are still widely 
used [6] despite their well-known biases in range 
estimation, sensitivity to point geometry, and 
inability to differentiate internal space [7-9]. In the 
1980s, kernel density estimators (KDE) for 
constructing UDs [10] were developed and became 
quickly popular. These methods, based on the 
superposition of Gaussian or compact (e.g. uniform 
or Epinechnikov) kernels, are more suitable for 
concave geometries, can construct probability 
contours, and are easy to use due to their 
implementation in a variety of software packages [6]. 
More recent methods combine the simplicity of 
polygon methods with the robustness of kernel 

methods by superimposing and then aggregating 
non-parametric shapes constructed around each point, 
including Voronoi polygons [11], Delaunay triangles 
[12], and local MCPs [13, 14]. 

These classic home range methods generally 
treat locations as independent, an assumption 
especially violated with regularly sampled GPS 
locations. Techniques to correct for serial correlation 
include resampling the data [15, 16] and applying 
weights based on temporal density [17]. However 
other methods have been developed that take 
advantage of the information contained in serial 
correlation by modeling the movement between 
known locations. Among these are the Brownian 
bridge movement model (BBMM) method that 
constructs kernel density surfaces above each 
movement segment based on a diffusion model and 
the spatial uncertainty of each end point [18]. 
Enhancements to BBMM refine the bridge model 
between known locations by dynamically adjusting 
diffusion rates based on an independent segmentation 
of the trajectory into discrete behaviour modes [19]. 
Similarly, movement based KDE (MKDE) 
incorporates serial correlation by interpolating 
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additional points between known locations based on 
activity time [20], with options to detect and correct 
for boundary constraints [20], and incorporate an 
anisotropic advective component into the local kernel 
[21]. More recently, time geography methods, which 
model movement between known locations based on 
the animal's maximum theoretical velocity, have 
been extended to home range analysis. These include 
the construction and aggregation of elliptical 
spatiotemporal potential path areas (PPA) [22], as 
well as probabilistic geoellipse surfaces based on a 
probability decay function away from the center path 
[23]. The later approach, known as Time Geography 
Density Estimation (TGDE), produces a probability 
surface comparable to BBMM but with smoothing 
objectively specified based on the animal's 
movement velocity.  

Such movement-based home range methods 
explicitly incorporate information contained in 
temporal auto-correlation, but are still essentially 
models of space-use. Other methods aim to infer 
behavioural clues from movement data based upon 
the temporal patterns in the data, including variations 
in the amount of time spent near each location [24, 
25], periodicities in step length [26, 27], path 
recursions [28], fractal searching behaviour [29], and 
a partial sum analysis of movement properties [30]. 
To shed light on behavioural mechanisms, such 
temporally-sensitive characterizations of movement 
can be analysed in light of data on resource 
distribution using spatiotemporal statistical models 
[31], process-based stochastic state space models 
[32-34], agent-based models [35, 36], and cognitive 
models [37]. 

Although progress has been made in developing 
methods that quantify space-use and behavior [38], 
these advances have not, in general, been well-
integrated [39]. Home range estimators commonly 
ignore time other than for time-interval windowing 
[6, 40], while spatiotemporal and space-state models 
are often divorced from a model of space-use. Far 
fewer techniques model space-use and time-use 
simultaneously, with important exceptions being 
joint space-time utilization distributions [41] and 
time weighted MKDE which combines movement 
KDE with an adaptation of the time-of-first passage 
method [42].  

Here we present Time Local Convex Hull 
(T-LoCoH) which generalizes the non-parametric 
utilization construction method, LoCoH [13]. 
T-LoCoH integrates time with space in the 

construction of local hulls through a scaling that 
relates distance and time in reference to the 
individual's characteristic velocity. The resulting hulls 
are local in both space and time, enabling metrics for 
movement phase and multiple dimensions of time-use 
including revisitation and duration. By taking hulls, 
rather than individual points, as samples for analysis, 
T-LoCoH produces UDs with high fidelity to temporal 
partitions of space and can differentiate internal space 
either with a traditional density gradient or alternately 
various behavioral metrics, including time-use 
properties. This flexibility places T-LoCoH in a 
growing family of methods responding to the demand 
for more question-based home range methods [43]. In 
the discussion, we compare and contrast T-LoCoH 
with other home range methods. 

 
Methods 

T-LoCoH is based upon LoCoH, a non-
parametric Lagrangian method for constructing UDs 
from a set of locations by aggregating local MCPs 
constructed around each point [14]. The algorithm 
begins by identifying a set of nearest neighbours for 
each point using one of three rules. The k-method 
simply selects the kth nearest neighbours around each 
point. The r-method takes all points within a fixed 
radius r, while the adaptive a-method selects all points 
whose cumulative distance to the parent point, ordered 
smallest to largest, is less than or equal to a (Figure 1). 
The value of k, a or r is provided by the analyst, who 
also decides whether duplicate locations should be 
ignored, deleted, or randomly offset by a fixed 
amount. Local convex hulls are constructed around 
each point and its nearest neighbours, then sorted by 
density which is proxied by hull area (k-method) or 
number of points enclosed with ties broken by area (r 
and a-methods). After sorting, hulls are cumulatively 
merged together by taking their union. When a union 
of hulls encloses i-percent of points, the union is saved 
as the ith isopleth. The union of hulls continues until 
all points are enclosed, thereby providing an estimate 
of the 100th percent isopleth [13, 14].  

 
Time-Scaled Distance 

T-LoCoH modifies the LoCoH algorithm by 
incorporating the time stamp of each point in two parts 
of the base algorithm, a) nearest neighbour selection 
and b) sorting of hulls.  

Nearest neighbour selection is based upon a 
distance metric called time-scaled distance (TSD), 
which transforms the time interval between any two 
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points into a third axis of Euclidean space. The 
translation of a unit of time into a unit of distance is 
accomplished through an adaptive scaling of the 
individual's maximum theoretical velocity, in essence 
a scaling of the maximum distance the individual 
could have theoretically traveled during the time 
interval. The effect of the time-distance axis is to 
push apart points that are far away in time even 
though they may be close in two-dimensional space. 
This transformation is not based on a mechanistic 
model of movement, but rather an empirical method 
that scales space and time in nearest neighbour 
identification, with space-selection at one end of the 
spectrum (whereby time plays no role) and time-
selection at the other (space plays no role).  

The equation for TSD, denoted by Ψ, with 
respect to any two points i and j (not necessarily in 
sequence) is given in Eq. 1. 

 

( )2max
22

ijijijij tsvyx ∆+∆+∆=Ψ  Eq. 1 
 

where s is a dimensionless scaling factor of the 
maximum theoretical velocity vmax. All pairs of 
points are evaluated for nearest neighbors. When s = 
0, the time-distance term drops out completely and 
TSD is equivalent to two-dimensional Euclidean 
distance (i.e., space selected). As s increases, time 
plays an increasingly important role, eventually 
reducing nearest neighbour selection to a time 
window. In this way TSD also bridges the continuous 
representation of space with discrete sampling in 
time. 

Numerous methods exist for estimating vmax, 
including biological studies and statistical models 
[22]. For the purpose of producing a heuristic yet 
scalable transformation of time intervals into 
distances, we select the simplest estimation method 
that is the maximum segment velocity after applying a 
filter to exclude temporally isolated observations. 

An alternative equation for TSD, based upon a 
diffusive model, has also been developed and is 
available in the software. For the purposes of ranking 
nearest neighbors, the two methods are nearly 
identical and we focus on the simpler maximum 
velocity transformation in this paper. Further details 
on the diffusive transformation can be found in 
Appendix II. 

Hulls produced from neighbours identified by 
TSD have two properties that make them ideal units 
for multi-dimensional analyses of space-use. First, 
TSD hulls are local not only in terms of space but also 
time, and thus directly reflect an individual's canonical 
movement phase at a specific time and place [44]. 
These in turn correlate with geometric properties of 
hulls such as area and elongation. This time 
localization produces UDs that preserve the 
boundaries of spatially overlapping but temporally 
distinct resource patches. Second, TSD hulls often 
enclose points that are closer in space but are bypassed 
as nearest neighbours due to their distance in time 
(Figure 2). These enclosed points represent additional 
visits to the hull area, and their properties can be used 
to derive metrics of temporal use. 
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Figure 1. Illustration of methods for determining how many nearest neighbors to select around each parent point. In each 
panel, the center point at the center is the parent point. The k-method selects the nearest k points (A). The r-method selects 
all points within a fixed radius r (B). The adaptive method selects all points whose cumulative distance, ordered smallest to 
largest, is ≤ a (C). k, r and a are parameters provided by the analyst. 
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Movement Phase Metrics 
Because TSD-constructed hulls are local both in 

terms of time and space, their geometric properties 
may be used to help infer the animal's movement 
phase [44]. T-LoCoH generates two metrics of hull 
elongation: the perimeter-area ratio (PAR) and 
eccentricity of a constructed minimum volume 
bounding ellipsoid (Figure 2) 

 These hull metrics do not incorporate time 
directly, but become meaningful measures of 
movement phase due to the localization of TSD hulls 
in space and time. 

The eccentricity of an ellipse varies from 0 for a 
perfect circle to 1 for a line. Hulls with low PAR or 
eccentricity represent areas of non-directional 
movement, whereas a high value PAR or eccentricity 
indicates areas where the animal was moving 
directionally, such as when the animal was migrating 
or traversing an area with low resource value. 
Elongation isopleths can be constructed by sorting 
hulls by PAR or eccentricity, thus delineating the 
movement space into regions with similar elongation 
values. 

 

Time-Use Metrics 
The amount of time an animal spends in an area, 

as well as the frequency of revisitation to that area, 
reflect two dimensions of resource value to the animal. 
These time-related variables can be thought of as axes 
of a time-use space upon which movements and 
resources in the landscape may be delineated (Figure 
3). For example, the area where an animal sleeps may 
have a relatively high duration (i.e., it remains there 
for a while when resting), but may or may not have a 
high revisitation index. Conversely water points may 
have a high revisitation index, but each visit may be of 
relatively short duration. Hull revisitation signatures 
can be used to differentiate important seasonal 
resources from areas of searching behavior. As 
illustrated in this study, time-use space also suggests 
an alternative approach to identifying 'core territory' 
which classically has been thought of spatially with 
definitions such as the smallest area that contains 50% 
of observed locations [45], deviations from a null 
model of uniform distribution [46, 47], or jumps in the 
area of isopleths [16, 48]. 

T-LoCoH computes metrics for revisitation and 
duration of use based upon an inter-visit gap (IVG) 
parameter provided by the analyst. IVG is defined as 
the amount of time that must pass for another 
occurrence within the hull to be considered a separate 
visit. IVG will normally be related to the periodicity of 
the movement behavior of interest. For example if 
feeding is the behavior of interest and there is a daily 
foraging pattern, an IVG value of 24 hours, or slightly 
less to account for variation in the revisit interval, 
would be reasonable. T-LoCoH analyzes all locations 
within a hull, and uses the IVG value to compute the 
total number of separate visits to the hull as well as the 
mean number of occurrences per visit. These metrics 
will be valid measures of revisitation and visit 
duration provided the IVG period is at least several 
times larger than the sampling frequency.  

 
Figure 2. Sample hull for a single point from a GPS 
dataset. Similarly colored points represent continuity in 
time. The parent-point is shown by a triangle; nearest 
neighbours identified using TSD with s=0.1 are circled. 
Non-circled points within the hull are closer to the 
parent point but were bypassed as nearest neighbours 
due to their distance in time. The ellipse outlined in red 
is the bounding ellipse whose eccentricity is one of the 
metrics of hull elongation. 
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Figure 3. Time-use space defined by revisitation and 
duration axes. 
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Isopleths 
To construct isopleths, local hulls are sorted by 

one of the hull metrics (Table 1) and cumulatively 
merged together. Isopleths may be defined as either 
quantiles of points enclosed, or as contours of values 
of the sort metric. Sorting hulls by point density 
produces traditional UDs reflecting the overall 
frequency of occurrence. Sorting on other metrics, 
such as the revisitation rate, produces spatial 
contours that have the same overall spatial extent but 
differentiate internal space by different aspects of 
behaviour. In addition to isopleths, behavioural 
patterns may emerge by exploring covariance and 
novel associations in the distribution of hulls in 
Euclidean space, hull metric space, and time. 
 
Simulated Data 

To evaluate T-LoCoH, we constructed a 
simulated dataset consisting of a single animal 
moving with a fixed step length and sampling 
frequency between nine resource patches (Figure 4). 
Within each patch, the individual makes a pre-
determined number of random steps with a constant 
step length and fixed sampling frequency of one 
hour. When it is time to move to the next patch, the 
animal makes directional movements to the patch 
exit area, also with a constant step length. It then 
proceeds to the next patch with a stochastic offset in 
the bearing applied at each step, drawn from a 

uniform distribution between negative and positive π/6 
radians. Each patch contains roughly 240 locations but 
with a gradient of revisitation rates and durations.  
Springbok Data 

We also applied T-LoCoH to a real dataset 
captured by GPS collars fitted on two springbok 
(Antidorcas marsupialis) in Etosha National Park 
(ENP), Namibia. Springbok are medium-sized 
antelope endemic to semi-arid regions of southwestern 
Africa. Although springbok are desert-adapted 
animals, able to achieve water balance through dietary 
sources alone, they drink water when it is available 
and frequently stay close to water sources during the 
dry season (May through October in ENP) [49, 50]. 
Breeding males are highly territorial while non-
breeding males and females can roam significant 
distances [50]. Springbok in Etosha were selected as a 
test case for T-LoCoH due to their varied movement 
patterns and sharp edges in their habitat caused 
particularly by saltpans. Location data for one male 
and one female were sampled every 30 minutes 
beginning early September 2009 and continuing 
through mid-April 2010 for the male and August 2009 
for the female, resulting in approximately 10,700 and 
17,200 locations respectively  (Figure 5, Movies S1-
S2). Location data were projected to Universal 
Transverse Mercator coordinates using ArcGIS [51] 
then imported into R. 

Density 
- area 
- number of nearest neighbours used in hull construction 
- number of enclosed points 
 
Elongation / Movement Phase 
- eccentricity of a bounding ellipsoid constructed around 

the hull 
- ratio of hull perimeter to area  
- mean and standard deviation of the speeda of nearest 

neighbours used in hull construction 
- mean and standard deviation of the speeda of all points 

enclosed by the hull  

Time Use 
- revisitation rate (number of separate visitsb) 
- duration of visit (mean number of occurrence 

per visitb) 
- revisitation rate and duration of visit 

normalized by area 
 
Time 
- hour of dayc 
- monthc 
- datec 
- time span of hull nearest neighbours 
 

Table 1. T-LoCoH Hull Metrics 
a  speed of a point sampled at time t is measured from t-1 to t+1 
b  separate visits differentiated by an inter-visit gap period provided by the analyst 
c  of the hull parent point 
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patch num visits points per visit 
p1 2 120 
p2 4 60 
p3 1 240 
p4 6 40 
p5 12 20 
p6 4 60 
p7 6 40 
p8 4 60 
p9 2 120 

   

Figure 4. Simulated dataset. The simulated data represent the locations of a single individual moving among nine resource 
patches with a gradient of revisitation rates, durations, and directionality. Point colors represent temporal continuity. 

 
Figure 5. Maps of the female (A) and male (B) springbok locations in Etosha National Park, Namibia. The colors of the 
points reflect temporal contiguity; tan lines are roads; yellow polygons are salt pans. 
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Implementation 
We implemented T-LoCoH in the R 

programming language [52] because of its wide use 
by movement ecologists, open source license, and 
flexibility in connecting to spatial databases [4]. The 
T-LoCoH package1 for R includes functions to load, 
clean, and save datasets; identify nearest neighbours; 
create hulls; compute hull metrics; sort and merge 
hulls into isopleths; plot results; overlay vector and 
raster GIS data; and export outputs as graphic 
images, GIS layers, and animations. The T-LoCoH 
software requires at a minimum a set of points as 
input, and with this can produce all the constructions 
as the original LoCoH. To incorporate time into the 
analysis, each point also requires a time stamp.  

                                                 
1 see http://tlocoh.r-forge.r-project.org   

T-LoCoH for R is best conceived of as a 
collection of data analysis and visualization tools 
rather than a one-click solution. The general workflow 
for using T-LoCoH is to 1) select a value of s that 
sufficiently scales the relationship between time and 
distance for the time scale of interest, 2) select a 
nearest neighbour method (k, a or r method) and 
parameter value that does the best job balancing type I 
and type II errors in the animal's total home range, 3) 
sort hulls according to density, elongation, or time use 
metrics depending on the questions of interest, 4) 
examine isopleths or hull parent points, and 5) 
interpret. A more detailed workflow is given in Table 
2, and guidelines for parameter selection are provided 
in Appendix I. 

1. Import data. 
2. Inspect the distribution of locations, sampling frequencies and step lengths, taking note of short-timed bursts, 

temporal gaps, and spatial outliers. Replace bursts with single points if needed. 
3. In reference to the study question, select a value of s that balances time and space using one of two approaches: 

a. Plot the distribution of s vs. the proportion of time-selected hulls, then select the s value corresponding to the 
desired proportion of time-selected hulls (for UDs try 40-60% time-selected hulls) 

b. Based on a priori knowledge of the organism, identify the time interval that corresponds to a movement pattern 
or cycle of interest (e.g., watering or foraging). If a priori knowledge does not exist, plot point distance to 
centroid over time to look for natural frequencies. Examine the distribution of s values that balance the spatial 
terms and time term in TSD (Equation 2) then select a value of s around the median value for the time interval(s) 
of interest. 

4. Pick a nearest-neighbor selection method: 
a. a-method: recommended in most cases due to robustness to point geometry 
b. k-method: more intuitive and faster but may be sensitive to spatial outliers 
c. r-method: may be appropriate for studies of perception, but generally not recommended for space-use models 

5. Create hulls for a range of a or k values: 
a. a-method: lower bound should be equal to or less than the value of a for which every point is a nearest neighbor 

in a hull composed from at least three points; and 5-10 points for the upper bound 
b. k-method: start with k values 3, 6, 9, …24 

6. Sort hulls based on number of enclosed points (a-method) or area (k-method) and progressively take the union to 
form isopleths. 

7. View plots of: 
a. isopleth area vs. a or k, looking for jumps in area that may indicate a spurious crossover 
b. isopleth edge:area ratio vs. a or k, looking for minima in core areas (isopleth levels ≤ 0.5)   
c. isopleth maps 

8. Select by eye the value of  a or k that a) minimizes spurious holes covering, b) maximizes hole filling in the core 
areas, and c) concurs with knowledge of the landscape / species. 

9. Compute any additional hull metrics needed for the ecological question of interest. If time use metrics are needed, 
select a value for the inter-visit gap based on a priori knowledge or cycles observed in a plot of point-to-centroid 
distance over time. 

10. Sort hulls according to the metric of interest and create isopleths. Plot isopleths overlaid with GIS layers / images as 
needed. 

11. Create scatterplots of hull metrics, looking for novel associations. Manually digitize regions of interest or use the 
color wheel symbology to visualize their distribution on a map. 

12. Interpret or explore associations with environmental and other data. 

Table 2. Twelve-step workflow for the T-LoCoH R package 

http://tlocoh.r-forge.r-project.org/
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Results  
 

Simulated Data 
Following the workflow outlined in Table 2, we 

first selected a span of time corresponding to a 
movement pattern of interest. From a priori 
information about how the simulated dataset was 
constructed, we knew the amount of time spent 
within a single patch visit varied from 20 to 240 
hours, and we wanted to select a value of s such that 
points from separate visits to the same patch will 
have TSD values far enough apart to be excluded as 
nearest neighbours. After plotting the distribution of 
s that results in the spatial terms equaling the time-
distance term in TSD (Figure 6A), we selected s=0.3, 
which is close to or greater than the median value of 
s for the full range of ∆t and results in approximately 
60% of all hulls being time-selected (Figure 6B). 

To examine the effects of time on home range 
construction, we next used the k-method to create 
hulls with and without time (s=0 and 0.3 
respectively) for a range of k, selected the k value 
that best satisfied the minimum spurious holes 
covering rule for the known patches, and constructed 
density isopleths. A visual comparison of isopleths 
reveals that the inclusion of time does a far better job 

delineating pathways while still capturing density 
gradients within the patches (Figure 8).  

We next created hulls using the adaptive method, 
which does a better job minimizing spurious cross-
overs caused by forays away from core areas [13]. We 
used the minimum proportion inclusion rule with n=2 
and 10 to identify upper and lower bounds for a, 
created hulls for a sequence of values in this range 
(Movie S3), and visually selected a=220 as the one 
which filled holes in core areas and minimized 
spurious cross-overs (Figure 7).  

We then computed two hull metrics for 
elongation (eccentricity of the bounding ellipsoid and 
perimeter-area ratio) and two metrics of time-use 
(number of separate visits and mean number of 
locations per visit). For the time-use metrics, we used 
an inter-visit gap period of 24 time steps based on a 
priori knowledge of the minimum amount of time the 
individual would be away from a patch before another 
return. Isopleths created from these metrics effectively 
identified the gradients of directionality and time-use 
that were programmed into the model. Both metrics of 
elongation highlighted the pathways as areas of 
directional movement, and within patch movements as 
largely non-directional (Figure 10). The revisitation 
isopleths (Figure 9A) identified the center patch, 
 

 

Figure 6. The proportion of time-selected hulls (i.e., hulls constructed from time sequential locations) for a range of s 
values when k=10 (A). Box-and-whiskers plot from the simulated dataset of the values of s that satisfy the equation  
( ) 222

max ijijij yxtsv ∆+∆=∆  for all pairs of points ∆t apart (B). The median value at each time interval ∆t represents the 
value of s whereby the time-distance term in TSD (Eq. 1) is equivalent to the actual Euclidean distance. 
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Figure 7. Density isopleths for simulated data created with the adaptive method 
(s=0.3, a=220). Isopleth levels indicate the proportion of total points enclosed, 
along a gradient of point density (red highest density, light blue lowest). 

 
Figure 8. Density isopleths for simulated data for k=6. In (A) time is included (s=0.3), and (B) ignored (s=0). Isopleth 
levels indicate the proportion of total points enclosed. Red isopleths have a higher density of points. Note in A the better 
resolution of pathways and filling of holes. 
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Figure 10. Elongation isopleths for simulated data. Elongation isopleths for simulated data created by sorted hulls by 
perimeter-area ratio (A) and eccentricity of bounding ellipse (B). Isopleth levels indicate the proportion of total points 
enclosed. Blue isopleths represents contours of low elongation (i.e., non-directional movement), while red indicates 
higher levels of elongation. Hulls constructed using the a-method (s=0.3, a=220). 

 
Figure 9. Time-use isopleths for simulated data. Revisitation isopleths (A) represent relative frequency of revisitation, 
with red contours being the hulls most often revisited, and light-blue the least often. Temporal duration isopleths (B) 
reflect the amount of time spent on each visit, with red indicating hulls with the longest duration and light-blue the 
shortest. Isopleth levels indicate the proportion of total points enclosed. Visits differentiated by an inter-visit gap period 
of 24 time steps, which was selected based on a priori information about the minimum period of time between patch 
visits. Hulls were constructed using the fixed-a method (s=0.3, a=220). 
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where the individual passed through more than any 
other patch but for brief periods of time, as an area 
with a high rate of revisitation, as well as the 
'highway' that was used several times to traverse 
between patches 5 and 7. Other areas with relatively 
high rates of revisitation were the 'exit area' of 
patches that acted as obligatory transit points 
between patch movements. Single-use pathways 
were correctly identified as the areas with the lowest 
rates of revisitation. Hulls with high duration values 
tended to be around the edges of patches where the 
animal was programmed to 'bounce back' off the 

border (B). Hulls with the shortest duration values 
were along pathways and in the center transit patch. 
Springbok Data 

Using the same workflow as before, we began by 
examining the distribution of s that produces space-
time parity for a range of time scales, as well as the 
proportions of time selected hulls (Figure 11). Daily 
foraging and watering cycles are known to be strong 
factors in shaping space use patterns in antelope, so 
we selected s=0.01 which in both individuals is near or 
above the median parity value for 24 hours. 

 

  

  
Figure 11. Left: box-and-whiskers plots of the values of s that satisfy the equation ( ) 222

max ijijij yxtsv ∆+∆=∆   for all 

pairs of points ∆t apart for the female (A) and male (C) springbok. Right: the proportion of time-selected hulls (i.e., hulls 
constructed from time sequential locations) for a range of s values when k=10 for the female (B) and male (D) springbok. 
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We next computed the lower and upper bounds 
for a as the minimum a value that include every 
point as a nearest neighbour in a hull with 3 and 5 
points respectively, obtaining ranges 4940-9950 for 
the female and 2450-5100 for the male. We created 
hulls for a sequence of a values in these ranges, 
plotted the isopleth area and edge-area ratio curves 
(Figure 12), and isopleth maps (Movies S4-S5). We 

made final selections of 8500 and 3700 respectively, 
corresponding to jumps in the isopleth area curves, 
local minima in the edge-area ratio curves for the 
lower isopleths, and a visual inspection of the isopleth 
maps looking for spurious hole covering and omission 
of real gaps (Figure 13). 
 

  

  
Figure 12. On left a vs. isopleth area curves for s=0.01 for the female (A) and male (C) springbok. On right a vs. 
isopleth edge:area ratio for female (B) and male (D). 
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Time-use metrics for the springbok were 
computed with an inter-visit gap period of 24 hours 
based on the known feeding and watering cycles of 
springbok. To explore the relationships among the 
distribution of hulls in time-use space, we produced 
scatterplots of the hull revisitation rates and duration 
(Figure 15). Striking features of these distributions 
include a long tail of highly revisited, low-duration 
hulls for the female (Figure 15A), and for the male a 
prominent tapering arm of hulls in the center with 
moderate revisitation rates and long durations 
(Figure 15B). To interpret these patterns, instead of 
creating isopleths we manually defined regions of 
interest in scatterplot space, then used those regions 
as symbology on a map of hull parent points and 
date-hour scatterplots (Figure 14). The results show a 
strong temporal signature associated with the male's 
territorial behavior, in which the well-defined 
appendage of hulls in time-use space (plot colors red 
and pink) coincides with a tight cluster of points on 
the map that radiates outward for hulls with shorter 
durations. The date and hour-of-day plots further 
reveal a diurnal pattern whereby frequently revisited 
hulls are used during the day for water access (blue 
color) with shorter movements associated with 
defensive behavior at night (pink color). Also evident 
over the course of the season are simultaneous shifts 

in hull durations, revisitation and the scale of 
movement across the landscape, indicating a shift 
from territorial (red/pink colors) to non-territorial 
behavior (green color). 

Analysis of time-use metrics for the female 
springbok also reveals qualitatively different behaviors 
over the course of a year (Figure 16), reflecting 
adaptations to the heterogeneous distribution of 
resources both in space and time. These include 
markedly higher revisitation rates during the dry 
season (May-October) than wet season (November-
April), indicative of seasonal dependence on perennial 
watering points (Figure 16A). The distribution of the 
average time spent per visit shows patterns of low and 
moderate duration interspersed with bouts of high 
duration, reflecting alternate periods of more 
stationary and migratory behavior (Figure 16B). To 
investigate the spatial dimensions of this alternating 
movement pattern, we then used hull metrics to extract 
'directional routes' by connecting temporally 
contiguous hulls with high levels of elongation (Figure 
17). These results reveal two types of directional 
movements, one set consisting of mostly short 
distances around perennial water points, and a second 
set of long distance movements along migratory 
routes. 

 
Figure 13. Density isopleths for the female (A) and male (B) springbok. Isopleth levels indicate the proportion of total 
points enclosed along a gradient of point density (red highest density, light blue lowest). Hulls constructed with the 
a-method (a=8500 and 3700 for the female and male respectively, s=0.01, kmin=0, duplicate points offset by 1 map unit). 
Tan lines are roads, and yellow polygons are salt pans. 
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Figure 15. Scatterplots of revisitation and visit duration for female (A) and male (B) springbok. Each point represents a 
hull. On the x-axis is revisitation rate (number of separate visits). On the y-axis is duration of visit (mean number of 
locations in the hull per visit). Separate visits defined by an inter-visit gap period of 24 hours. Values have been jiggled by 
0.1 to better represent point density. 

 
Figure 14. Hull parent-points for the male springbok. In each plot, each point represents the parent-point of a hull. The 
upper-right scatterplot shows the distribution of hulls by revisitation rate and visit duration. Colors from the manually 
defined regions of interest are reproduced on the map and bottom row of date-hour scatterplots. 
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Figure 16. Plots of (A) hull revisitation rate (number of separate visits), and (B) visit duration (mean number of locations 
in the hull per visit) over time for the female springbok. Separate visits defined by an inter-visit gap period of 1 day. 
Y-values have been jiggled by 0.1 to better represent point density. 

 
Figure 17. Directional routes for the female springbok. Routes are extracted by connecting the parent points of 
temporally contiguous hulls whose bounding ellipsoid eccentricity falls in the top 15%. Eccentricity values have been 
smoothed with a temporal averaging function and scanning window of one time step. Blue dots are known perennial 
water points.  
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Discussion 
Although T-LoCoH can process any set of 

location data, the algorithm and software 
implementation were developed specifically in 
response to the challenges and opportunities 
presented by GPS movement datasets. These datasets 
typically are large, have good temporal continuity, 
and follow individuals both in their core area and in 
inter-patch movements and excursions to new areas 
[5]. As a hull based method, T-LoCoH does well 
with GPS data due to its robustness to point 
geometry and spatial outliers, and ability to process 
relatively large datasets. Analyses of time-based hull 
metrics, such as revisitation rate, are sensitive to the 
sampling frequency and may be biased by gaps in the 
time series. 

Our tests of T-LoCoH on a simulated dataset 
with known properties verified that compared to 
hulls created without time, density isopleths 
constructed from TSD hulls have better fidelity to the 
temporal details of movement patterns, and finer 
resolution of spatially overlapping but temporally 
differentiated resource use. This was most clearly 
seen around path intersections, which tend to blow 
up with time ignorant home range estimators but 
become well-defined with the TSD distance metric 
that penalizes points far away in time. T-LoCoH can 
thus produce UDs that capture not only immutable 
edges in the landscape such as fence lines and water 
bodies, but also the temporal boundaries of resource 
use, properties which may be advantageous when 
constructing space-use models for the purpose of 
evaluating resource utilization functions [53, 54]. 

Hulls that capture a comparable span of time 
and space also provide a basis for analysis of 
behavior, as demonstrated by the analysis of 
springbok. For the male springbok, the distribution of 
hulls in time-use space reveals a distinctive spike that 
coincides with a relatively small area we infer to be 
his core territory. Time-use space also reveals a 
diurnal pattern to movement phases, suggesting a 
temporal strategy for balancing resource optimization 
with territorial defense. In addition, hulls have the 
potential to serve as platforms for integrating into the 
analysis other fixed and dynamic variables, such as 
ground cover, environmental variables, proximity to 
landscape features, and spatial relationships with 
other individuals. 

T-LoCoH has both similarities and differences 
with other home range estimation methods. Like 
many of the newer segment-based methods (e.g., 

BBMM, MKDE, TGDE), T-LoCoH incorporates the 
time stamp of each location rather than ignoring that 
information or using it to control for autocorrelation. 
However T-LoCoH's approach to time integration is 
quite different than segment-based methods, which use 
time information to 1) identify discrete segments of 
the trajectory and then 2) model movement along 
those segments. In contrast, T LoCoH applies the TSD 
metric to characterize the spatiotemporal relationship 
between all pairs of points, not just sequential pairs. 
T-LoCoH's approach also stands apart by providing a 
scaling parameter that allows an analyst to control the 
degree to which time is involved in modeling space-
use. We believe this flexibility allows T-LoCoH to be 
tailored to a variety of questions and systems, but 
additional case studies are needed to develop and test 
principles for space-time scaling. 

Other fundamental differences between T-
LoCoH and segment-based methods concern the 
spatial units that are aggregated and the handling of 
uncertainty. As a method based on hulls created by 
'connecting the dots', T-LoCoH hulls by definition 
'hug' the data. This produces utilization distributions 
that have good fidelity to edges in the movement data, 
including spatial edges caused by landscape features 
and temporal edges caused by temporal partitioning 
strategies. Parametric methods on the other hand do a 
better job at modeling spatial uncertainty, however at 
the cost of superimposing geometric forms that may 
have little to do with the actual movement patterns. 
Time geography methods have characteristics of both 
hull-based and movement-based kernel methods by 
modeling movement segments but with a fixed edge 
geoellipse defined by the maximum theoretical 
velocity. Another difference between polygon-based 
methods like T-LoCoH and parametric kernel methods 
is the way in which space is modeled: T-LoCoH 
produces vector utilization distributions whereas 
kernel estimators produce rasterized probability 
surfaces. In practice however raster surfaces can be 
easily converted into vector isopleths and vice-versa. 

Finally, T-LoCoH differs from classic home 
range estimation methods in extending the concept of 
utilization distributions beyond that of intensity of use 
or probability of occurrence. Hulls, as data-driven 
spatial units, provide a natural foundation for a range 
of spatial analyses including the spatial patterns of 
time use strategies, activity modes, and environmental 
variables. Other authors have likewise begun to 
analyze the outputs of superimposed kernel functions 
for similar purposes [e.g., 42]. Time-use metrics 
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represent the low hanging fruit of spatially explicit 
behavioral analyses, and we predict this trend will 
continue as the growing richness of geolocated 
ancillary data drives new research questions. 

For well over two decades, movement 
ecologists have been engaged in a lively debate about 
the 'best' home range estimator and efforts continue 
to improve the fidelity of methods with respect to the 
actual movements of individuals, as tested using 
simulation data [e.g., 55]. T-LoCoH's flexibility in 
generating spatial contours that reflect a variety of 
behavioral patterns, including but not limited to the 
frequency of use, departs from this search for the 
Holy Grail, and is rather based upon a 
conceptualization of home range not as a geometry to 
be discovered but as a biological construct 
inextricably linked to a question or hypothesis [5, 
43]. Towards this end, we believe movement ecology 
will be best served by a suite of spatial analysis 
methods, and T-LoCoH's toolbox approach will lead 
to deeper insights about the underlying drivers of 
both space and time use. 
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Additional Files  
 
The QuickTime movie files are available at:  
http://tlocoh.r-forge.r-project.org/hrplus  
 
Movie S1 
Animation of the female springbok's movements. 
Tan lines are roads, yellow polygons are salt pans, 
and blue dots are known perennial water points. 
 
Movie S2 
Animation of the male springbok's movements. Tan 
lines are roads, yellow polygons are salt pans, and 
blue dots are known perennial water points. 
 
Movie S3 
Utilization distributions for the simulated data for 
values of a between 20 and 250, s=0.3. 
 
Movie S4 
Utilization distributions for the female springbok for 
values of a between 4000 and 11000, s=0.01. Tan 
lines are roads and yellow polygons are salt pans. 
 
Movie S5 
Utilization distributions for the male springbok for 
values of a between 2100 and 4500, s=0.01. Tan 
lines are roads and yellow polygons are salt pans. 

http://tlocoh.r-forge.r-project.org/hrplus
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Appendix I - Parameter Selection 
 

A home range is an analytical construct 
developed to answer ecological questions about 
individuals or populations, so that the best approach 
to parameter selection will be specific to the questions 
and data. T-LoCoH for R provides functions designed 
to help the user select and evaluate parameter values 
appropriate for the species, system, and study 
question. 

The degree to which time should play a role in 
nearest neighbour selection depends on factors such 
as the degree to which temporal partitioning of 
resources exists, the time scale of interest, and above 
all the objective of the space use model. The space-
time balance is controlled by the s parameter in the 
TSD equation, with two complementary approaches 
for selecting s. Viewing nearest neighbour selection 
as a spectrum from pure space-selection to pure time-
selection, the analyst can select a value of s that 
results in a desired proportion of hulls being time-
selected (Figure 18A). This approach is intuitive and 
generally works well for producing classic home 
range estimates with strong fidelity to temporal 
partitioning. Alternately, if there is a specific time 
scale of interest, the analyst can plot the distribution 
of s values that equalizes the spatial and time-distance 

terms in TSD for all pairs of points ∆t apart (Figure 
18B), in other words the values of s given by (cf. Eq. 
1): 

 
( )2max

22
ijijij tsvyx ∆=∆+∆  (Eq. 2) 

 
With the distribution of space-time parity as a 

guide, the user can select a value of s such that time 
either dominates TSD for the time scale of interest, or 
is more balanced with distance. Other plots that aid in 
the selection of s include the ratio of time-distance to 
TSD or Euclidean distance (Figure 19), and the time 
span of nearest neighbours for different values of s 
(Figure 20). These distributions show how time 
comes to dominate space in hull construction with 
increasing values of s. 

After s is selected, the analyst must next pick a 
nearest neighbour selection method. The k-method is 
intuitive and works well when there is good temporal 
coverage, however the adaptive or a-method, in 
which all locations within a cumulative distance a are 
considered nearest neighbours, has been shown to be 
the most robust to point geometry and is generally 
recommended [13]. The fixed radius r-method is 

 
Figure 18. The proportion of time-selected hulls (i.e., hulls constructed from time sequential locations) for a range of s 
values when k=10 (A). Box-and-whiskers plot from the simulated dataset of the values of s that satisfy the equation  
( ) 222

max ijijij yxtsv ∆+∆=∆  for all pairs of points ∆t apart (B). The median value at each time interval ∆t represents the 
value of s whereby the time-distance term in TSD (Eq. 1) is equivalent to the actual Euclidean distance. 
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Figure 19. Box-and-whiskers plots of the ratio of the maximum temporal distance (MTD) to TSD for all nearest 
neighbors for k=10 and a range of s values for the female (A) and male (B) springbok. The plots reveal that as s 
increases, the time-distance term comes to dominate the TSD metric resulting in hulls which are increasingly more 
localized in time than space. 

  
Figure 20. Histograms of the time span (in hours) of the ten nearest neighbors for each location of the female (A) and 
male (B) springbok (N=17206 and 10702 respectively), expressed as a proportion of the median sampling interval. 
When s = 0, time plays no role in the selection of nearest neighbors and the time span of a set of neighbors can even 
equal the duration of the entire dataset (i.e. the first and last locations can be nearest neighbors if they're close together 
in space). As s increases, the time span converges on the number of nearest neighbors in the hull, in this case k+1. 
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appropriate for specific questions such as models of 
sensory space, but generally performs poorly for 
utilization distributions. Selecting a value for a or r is 
not intuitive when time is included because TSD is no 
longer a physical distance, so a heuristic approach is 
taken using visualization and computational aids. 
Whichever method is used, four key principles and a  
set of computations and visualizations guide the 
choice of parameter values.  

The minimum proportion inclusion (MPI) rule 
specifies a lower limit for a/k/r as the value that 
results in a proportion p of points included as a 

nearest neighbour for at least one hull with n nearest 
neighbours, where p and n are provided by the 
analyst. If the study question calls for a space-use 
model for all observations, p would normally be 1, 
however if there are spatial outliers in the data or the 
study question concerns core areas only, p may be 
less than one. For the k-method, the MPI rule is 
satisfied by a lower bound of k=n, while the lower 
bound for the a-method is computed from the data. 
The MPI rule can also be used to identify an upper 
bound by setting n≥10 because k values in this range 
typically begin to over-estimate home ranges. 

  

  

Figure 21. On left a vs. isopleth area curves for s=0.01 for the female (A) and male (C) springbok. On right a vs. 
isopleth edge:area ratio for female (B) and male (D).  
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The minimum spurious hole covering (MSHC) 
rule states that the parameter value should be the 
smallest value that covers spurious holes, thus tending 
to reduce Type I errors [14]. Spurious holes are holes 
created by small parameter values that produce a 
Swiss-cheese pattern (Figure 8B), as opposed to real 
holes created by topography or landscape features that 
the animal avoided. Good places to identify spurious 
holes are core areas (isopleth levels ≤ 0.5) with 
homogenous land cover. Conversely the true hole 
exclusion principle provides a criterion for the upper 

limit by omitting areas not used by the animal hence 
tending to reduce Type II errors. As a and k increase, 
isopleths typically intrude into areas precluded by 
landscape boundaries such as topography or water 
edges, or may erroneously append large swaths of 
habitat in areas where the animal only traversed. Such 
crossover errors are usually evident as sharp jumps in 
plots of isopleth area (Figure 21) and visual 
inspection of isopleth maps (Movies S3-S5) in 
reference to knowledge of the species and ecosystem. 

 
Appendix II. Alternative Time-Scaled Distance: The Diffusive Model  
 

Time-Scaled Distance (TSD) is a metric that 
measures closeness between any two points in terms 
of their relationship in both space and in time. The 
metric begins with Euclidean distance and adds a 
term that transforms the temporal distance into units 
of space, such that points further apart in time have a 
larger TSD value. In T-LoCoH, TSD is used to rank 
each point's nearest neighbors for the purpose of 
creating hulls that are local in both space and time. 
TSD also uses a scaling parameter to control the 
balance between time and distance, because the 
degree to which time localization is helpful varies 
with the goals the analysis. 

We explored two variants of TSD, a maximum 
velocity transformation presented in the main text 
and a diffusion-based transformation presented 
below. For the purposes of ranking nearest neighbors 
and scalability, both variants were very similar, so 
we recommend the simpler maximum velocity 
transformation. In this section, we present the 
derivation of the alternative diffusion model and 
discuss its properties. Both variants of the TSD 
metric are available in the T-LoCoH package for R. 

The diffusive transformation is based upon a 
Gaussian diffusion model that computes the expected 
distance the animal would have travelled during the 
time interval had it been moving in an unbounded 
random walk. It can be shown that in a purely 
unbounded random walk with constant step length λ 
and no correlation between the direction of 
successive steps that the expected value of the square 
of the net displacement D between any two points N 
steps apart is given by equation 1 (Bovet & 
Benhamou 1988:428). 

 
NDE 22 )( λ=  Eq. S1 

Modifying this equation for a series of time-
stamped locations, we estimate the expected mean 
square displacement of any two points separated by 
time interval ∆t by: 

 

τ
tdDE ∆

= 22 )(  Eq. S2 

where τ is the median sampling interval (i.e., dominant 
sampling frequency) of the dataset, and d is the 
median step length of the entire dataset. We expect 
this approximation to hold well for time series in 
which the sampling frequency is fairly regular. 
Incorporating diffusion distance as a third axis in 
Euclidean space, and adding a dimensionless scaling 
factor s that controls the degree to which time scales 
space, we arrive at the diffusive form of TSD, denoted 
by Ψ, with respect to any two points i and j (not 
necessarily sequential): 
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When s = 0, the diffusion term drops out 
completely and TSD is equivalent to two-dimensional 
Euclidean distance. As s increases, time plays an 
increasingly important role.  For s >> 1, the 
importance of space disappears and the method 
reduces to a type of time-series analysis. 

Tests with simulated and real data (not 
presented) reveal few differences in the ranking of 
nearest neighbors identified with the maximum-
velocity and diffusive time-space transformations, 
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when the scaling parameter is selected to achieve a 
common percentage of time-selected hulls. The 
diffusive transformation may be better suited for 
analyses over longer time scales when diffusion is a 
more suitable model, or for species more likely to be 
governed by diffusion (e.g. dispersing organisms).  

The diffusion transformation also provide the 
ability to plot predicted vs. actual distance, which 
while ancillary to hulls-based analyses provide useful 
characterizations of movement in terms of sub-
diffusion and supra-diffusion. Figure 22 shows the 

predicted vs. actual distances between pairs of points 
for the two springbok tracking datasets. Displacement 
of the female, who travelled nearly 120km east during 
the wet season, exhibited a supra-diffusion pattern 
with numerous plateaus and jumps reflecting long 
periods of foraging interspersed with short bursts of 
travel (Movie S1). In contrast the male springbok 
displayed a sub-diffusion pattern for all time intervals, 
reflecting his markedly territorial behavior (Movie 
S2). 

   
Figure 22. Actual vs. predicted distance from a diffusion model of movement for the female (A) and territorial male (B) 
springbok. The red line is the predicted diffusion distance while the box and whisker plots are the distribution of actual 
distances for all pairs of points ∆t apart on the x-axis. 
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